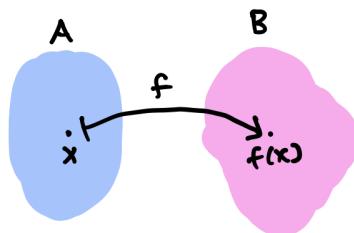


Review: Functions

A function takes elements of one set (called the **domain**) and maps them to another set (called the **codomain**) so that we get a unique output for each input. We use the following notation for a function f with domain A and codomain B :

$$f : A \rightarrow B$$
$$x \mapsto f(x).$$

The top line gives the function's name along with the domain and codomain. Here, we use the regular arrow \rightarrow (LaTeX \to). The bottom line indicates what happens to individual elements: an element x in A is mapped to an element $f(x)$ in B , with the 'maps to' arrow \mapsto (LaTeX \mapsto).



Definition (Image and Inverse Image)

Consider a function $f : A \rightarrow B$. Suppose $C \subseteq A$ and $D \subseteq B$.

- We define $f(C) = \{f(x) : x \in C\}$ to be the **image** of C under this mapping.
- We define $f^{-1}(D) = \{x : f(x) \in D\}$ to be the **inverse image** of D under this mapping. Note that the inverse image may not be a unique x for each $f(x)$.

That is, the image a set of outputs $f(C)$ for a particular input set C . The inverse image is the set of inputs $f^{-1}D$ that yield a particular output set D . The image for the domain of a function is called the **range**.

Activity:

Explain in your own words the difference between codomain, range, and image. When are these quantities the same? When are they different? Give examples and/or draw pictures to illustrate this.

Next, we give some important terminology to describe a function $f : A \rightarrow B$.

Definition (Surjection)

When $f(A) = B$, we say that f is a **surjection** or that f is **surjective**. Alternatively, we say that f is **onto**.

In other words, a function is surjective if the range and the codomain are the same: it's a function whose mapping 'hits' every element in the codomain as an output.

Definition (Injection)

If $f(x) = f(y)$ implies that $x = y$, we say f is an **injection** or that f is **injective**. Alternatively, we say that f is **one-to-one**.

Equivalently, f is injective if the inverse image of $f(x)$ is a single point. In an injective function, each output came from a unique input.

Definition (Bijection)

If f is both one to one and onto, we say that f is a **bijection** or that f is **bijective**. A bijection means that the inverse of a function is also a function, and in this case we say that A and B are in **one-to-one correspondence**.

Activity:

Give examples and/or draw pictures of functions that satisfy the following:

- surjective, but not injective
- injective, but not surjective
- neither injective nor surjective
- bijective