
For this problem, you may use Rudin 1.33 (the standard Triangle Inequality).

Rudin 1.12

If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| .

This is a proof by induction on the variable n.

Starting with the base case n = 1. When n = 1, the inequality is |z1| ≤ |z1|, which is true.

My inductive hypothesis is this true for n = k, such that |z1+z2+...+zk| ≤ |z1|+|z2|+...+|zk|

To prove n = k + 1 is also true, I will use Rudin 1.33 (the standard Triangle Inequality).
First I will take the left side of my inductive hypothesis, and extend the inside of the absolute
value signs to n = k + 1 by adding zk+1 to the inside and adding |zk+1| to the outside to
get |z1 + z2 + ... + zk + zk+1| and |z1 + z2 + ... + zk| + |zk+1|. |z1 + z2 + ... + zk + zk+1| ≤
|z1+z2+...+zk|+|zk+1| because Rudin 1.33 states |z+w| ≤ |z|+|w|, where z1+z2+...+zk = z
and zk+1 = w. Now I will take my inductive hypothesis and just add the term |zk+1| to both
sides to get |z1+z2+...+zk|+|zk+1| ≤ |z1|+|z2|+...+|zk|+|zk+1|. Since |z1+z2+...+zk+zk+1| ≤
|z1 + z2 + ...+ zk|+ |zk+1| and |z1 + z2 + ...+ zk|+ |zk+1| ≤ |z1|+ |z2|+ ...+ |zk|+ |zk+1|, by
the transitive property, |z1 + z2 + ...+ zk + zk+1| ≤ |z1|+ |z2|+ ...+ |zk|+ |zk+1| showing my
inductive hypothesis is true.

We can now conclude that if z1, ..., zn are complex, then |z1+z2+...+zn| ≤ |z1|+|z2|+...+|zn|.

Proof 1.



Rudin 1.12

If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| .

Recall that the absolute value of a given complex number zk, k ∈ N can be found as the
non-negative square root of the product of itself and its conjugate, written

|zk| =
√
zkzk.

We can square the lefthand side and distribute

|z1 + z2 + ...+ zn|2 = (z1 + z2 + ...+ zn)(z1 + z2 + ...+ zn)

=
n∑

i=1

n∑
j=1

zizj.

For a given pair of complex numbers zi and zj, i,j ∈ N, recall that zizj and zizj are conjugates.
Thus, zizj + zizj = 2Re(zizj). We can separate out the terms for which i ̸= j, combine pairs
by symmetry, and return to using absolute value notation

|z1 + z2 + ...+ zn|2 =
n∑

i=1

zizi +
n∑

i=1

n∑
j=1

j ̸=i

zizj

=
n∑

i=1

zizi +

j∑
i=1

n∑
j=1

2Re(zizj)

=
n∑

i=1

|zi|2 +
j∑

i=1

n∑
j=1

2Re(zizj).

The real part of a complex number is always less than or equal to the absolute value, which
also includes the magnitude of the imaginary part. Hence, we can state

|z1 + z2 + ...+ zn|2 =
n∑

i=1

|zi|2 +
j∑

i=1

n∑
j=1

2Re(zizj)

≤
n∑

i=1

|zi|2 +
j∑

i=1

n∑
j=1

2|zizj|

For a pair of complex number zi and zj, it is true that |zizj| = |zi||zj| and that |z| = |z|.
We can use these identities to rewrite the second sum, which allows us to factor the entire
expression

|z1 + z2 + ...+ zn|2 ≤
n∑

i=1

|zi|2 +
j∑

i=1

n∑
j=1

2|zi||zj|

≤ (|z1|+ |z2|+ ...+ |zn|)2

Proof 2.
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If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| .

Proof. We proceed by induction on n, the indices of the complex numbers z1, . . . , zn.

We begin with the base case n = 1. Since z1 = z1, it follows that |z1| ≤ |z1|. Therefore, the
statement is true for n = 1.

Proceeding with the inductive step, assume the statement is true for some n ∈ N, that is
|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn| . We want to show that the statement also holds for n+ 1.
Consider

|z1 + · · ·+ zn + zn+1|

Letting Sn = z1 + · · ·+ zn, the standard triangle inequality (Rudin 1.33 (e)) states that the
following inequality is true:

|Sn + zn+1| ≤ |Sn|+ |zn+1|

We can apply the inductive hypothesis to the sum Sn as there are n complex numbers in
the sum. Thus, by the inductive hypothesis, |Sn| ≤ |z1| + |z2| + · · · + |zn|. Therefore, the
following inequality is true about |Sn|+ |zn+1|:

|Sn|+ |zn+1| ≤ |z1|+ · · ·+ |zn|+ |zn+1|

Since Sn = z1+ · · ·+zn, we have shown that |z1+ · · ·+zn+zn+1| ≤ |z1|+ · · ·+ |zn|+ |zn+1|, as
desired. Thus, we have proven by induction that |z1+z2+· · ·+zn| ≤ |z1|+|z2|+· · ·+|zn| .

Proof 3.
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If z1, . . . , zn are complex, prove that

|z1 + z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn| .

The proof is by induction on n. For n = 1, we have |z1| ≤ |z1| which is trivially true. In the
inductive case, let n = k+1 where the statement holds for k and let z = z1 + · · ·+ zk. If we
add |zk+1| to both sides of the inductive hypothesis, we see that

|z|+ |zk+1| ≤ |z1|+ · · ·+ |zk|+ |zk+1|.

From Theorem 1.33(e) in Rudin, we know that |z + zk+1| ≤ |z| + |zk+1|. Thus, putting the
two inequalities together, we have

|z + zk+1| ≤ |z|+ |zk+1| ≤ |z1|+ · · ·+ |zk|+ |zk+1|,

so the statement holds by transitivity. Because the base case and induceive case hold, the
statement is true for all n.

Proof 4.




