
Proof by induction

Proof by induction is a popular and useful proof technique. Here at Harvey Mudd College,

we encounter it in our very first week in Math 19. In this lecture, we’ll learn a little bit more

about where this technique comes from and why it works, and we’ll encounter some style

tips and pitfalls to avoid.

The natural numbers N

What are the natural numbers? We can intuitively think of this set as the ‘counting numbers’

N = {1, 2, 3, . . . }. A set of axioms for the natural numbers comes from Giuseppe Peano

(1889).

Definition (The Peano Axioms)

Let N be a set containing the element 1. Define a successor function S : N ! N, with
the following requirements:

1. S(x) 6= 1 for all x 2 N.

2. If S(x) = S(y) then x = y for all x, y 2 N.

3. Let A be any subset of N which contains 1 and is closed under S, so S(x) 2 A
for all x 2 A.

Then A = N.

The definition boils down to two ideas: there is a first element (1), and every element in the

set has a successor in the set that is not 1. So, we can see that proof by induction is based

on axiomatic properties of N.

Remark. You can start N with zero instead of 1. I’m not going to take a stance on this

debate either way.

The principle of induction implies the well-ordering principle of N :

Definition (The well-ordering principle)

Every nonempty subset of N has a smallest element.



The basics of proof by induction

Proof by induction is a way to prove infinitely many statements at once, given that these

statements can be indexed by n 2 N : in other words, there’s a first statement, a second

statement, a third statement, and so on.

We can formalize this a little more: if we let P (n) be a set of statements that are indexed

by n 2 N, then the goal is to show that P (n) is true for all n.

How proof by induction works. If S = {n : P (n) is true}, where n 2 N, then is a subset

of N. If our goal is to show that P (n) is true for all n, this is equivalent to showing that

S = N. To do this, we must show:

1. P (1) is true. We call this the base case. (There is a first element)

2. If P (k) is true then P (k + 1) is true. We call this the inductive step, and the

assumption that P (k) is true is called the inductive hypothesis. (Every element has
a successor).

Then, because S satisfies the axioms, it must be that S = N and so we can conclude our

statement P (n) is true for all n.



Strong induction

There is a twist on this proof technique that we call strong induction. To use strong

induction, we must show:

1. Base case: P (1) is true.

2. Inductive step: If P (1), P (2), . . . , P (k) is true, then P (k + 1) is true.

Notice that the only di↵erence is that we have modified the inductive hypothesis to as-

sume that all statements up to statement k are true, instead of only assuming that the kth
statement is true.

Despite the name, strong induction does not give you a ‘stronger’ result. You are still

showing that S is the same as N, so these techniques are in fact equivalent.



Style tips for proof by induction

• At the beginning of your proof, inform your reader that it’s a proof by induction on

, where you fill in the blank with your variable that will serve as an

index.

• Separate out your hypotheses: tell your reader when you’re doing the base case and

when you’re doing the inductive step. Make your inductive hypothesis clear.

• Remind your reader of the conclusion at the end.

In the following examples in this lecture, I put these style tips into practice.



Common errors in using proof by induction

Proof by induction is a useful technique, but you must make sure to proceed carefully: there

are some common traps that it’s surprisingly easy to fall into. I will demonstrate a few of

these by constructing some false proofs using proof by induction.

Let’s practice: Critique this “proof.”

Theorem (An untrue ‘theorem’ about natural numbers)

Every natural number n is even.

“Proof.” We proceed by induction on n. By way of strong induction, assume that all

numbers less than or equal to n are even. We want to show that n + 1 is also even. Notice

that

n+ 1 = (n� 1) + 2.

By our inductive hypothesis, n� 1 is even. So, n+1 is the sum of two even numbers, which

is also even, as desired.

What’s wrong with this proof?

We jumped straight to the inductive hypothesis and we forgot to prove the base case. This

is a really important step: for this example, our base case is not satisfied for n = 1, and so

the rest of our logic does not follow.



Critique this “proof.”

Theorem (A ‘theorem’ about horses)

All horses are the same color.

“Proof.” We proceed by induction on the number of horses n in a set of horses.

We begin with the base case, n = 1. In a set with 1 horse, all horses are trivially the same

color.

Now, let Sn = {h1, h2, . . . , hn} be a set of n horses. Assume S satisfies the inductive hypoth-

esis, that is, all horses in Sn are the same color. If there is another horse of that color that’s

not in the set, then we could add it to create a new set Sn+1 = {h1, h2, . . . , hn, hn+1} which

contains n+ 1 horses of the same color, as desired.

We can then conclude that a set of any size must contain only horses of the same color, and

thus all horses are the same color.

What’s wrong with this proof?

A common mistake is to try to start with the smaller set and ‘build up’ to the bigger set in

the inductive step. This often leads to constructing specific examples or cases, like we did

here. You should start with the bigger set (e.g., a set of size n+1) and find the smaller set

that satisfies the inductive hypothesis within it.



Let’s try that last theorem again. Critique this “proof.”

Theorem (A ‘theorem’ about horses)

All horses are the same color.

“Proof.” We proceed by induction on the number of horses n in a set of horses.

We begin with the base case, n = 1. In a set with 1 horse, all horses are trivially the same

color.

Let Sn = {h1, h2, . . . , hn} be a set of n horses. Assume Sn satisfies the inductive hy-

pothesis, that is, all horses in Sn are the same color. Now, consider the set Sn+1 =

{h1, h2, . . . , hn, hn+1}. Notice this set contains Sn = {h1, h2, . . . , hn} and S 0
n = {h2, h2, . . . , hn+1}.

Both sets contain n horses, so they are all the same color in each set by the inductive hy-

pothesis. But, both sets contain some of the same horses (for example, h2) and so all horses

in Sn+1 must be the same color.

We can then conclude that a set of any size must contain only horses of the same color, and

thus all horses are the same color.

What’s wrong with this proof?

This one is more subtle! Even though we corrected our error from the previous attempt,

we’ve accidentally assumed that we have at least three horses. If there are only two horses,

the inductive step fails, because there are not overlapping sets.
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Activity:

Prove by induction that every 2
n ⇥ 2

n
chess board with one square removed can be

tiled by L-shaped tiles made of three squares.
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