

01-Lecture 1 Mathematical Writing_LdeP_S2026

Tuesday, January 20, 2026 12:56 PM

Lecture 1
Mathema...

Math 131 Mathematical Analysis

**Lecture 1:
Introduction to analysis and mathematical
writing**

Analysis is a class about infinity.

Part 1.

What does it mean for a set to be infinite?
What kinds of structure can infinite sets have?
How can we define distances and bounds?

Part 2.

How can we make sense of infinite lists and sums?

Part 3.

Parts 1 and 2 give us the tools to understand functions rigorously!

2

HARVEY MUDD COLLEGE

Intro: Course Tools and Canvas

<https://harveymuddcollege.instructure.com/courses/3334>

3

HARVEY MUDD COLLEGE

Problem-solving principles (Grant Sanderson)

Learning Goal 1 : Problem Solving

- Use the defining features of a problem
- Start by solving the simplest possible variant
- Seek symmetry
- List any definitions/theorems/equations that might be useful
- Do examples to build intuition
- Draw pictures

Defining all objects
• Give names that make sense
Ex : Rectangle R
 m, n : Natural #s
 θ, α : Angles
 ρ : Density

4

HARVEY MUDD COLLEGE

Learning Goal 2 : Formulate Mathematical Ideas well .

Table discussion

Let's solve a problem.

The **problem**: Think about rectangles with integer side lengths. Does every such rectangle with even area also have an even length side, and vice versa?

Common # sets :

\mathbb{N} : Natural #s
 \mathbb{Z} : Integers
 \mathbb{Q} : Rationals
 \mathbb{R} : Reals
 \mathbb{C} : Complex

{

- Use the defining features of a problem
- Start by solving the simplest possible variant
- Seek symmetry
- List any definitions/theorems/equations that might be useful
- Do examples to build intuition
- Draw pictures

5

HARVEY MUDD COLLEGE

Learning Goal 2: Learn to formulate math ideas well.

Table discussion

Turning a problem into a conjecture

At the board:
write your mathematically precise conjecture.

Think about rectangles with integer side lengths.
Does every such rectangle with even area also have an even length side, and vice versa?

Write a conjecture based on your last discussion.
Consider these tips:

- Define our mathematical objects of interest.
- What do we want to say?
- Use descriptive, full sentences.
- Don't editorialize.
- Revise as necessary.

6

HARVEY MUD COLLEGE

Turning our problem into a conjecture

Proof Structure

- Define objects
- Set up necessary assumptions
- State proposal implication

Think about rectangles with integer side lengths.
Does every such rectangle with even area also have an even length side, and vice versa?

Conjecture. Let R be the set of all rectangles with integer length and width. Let $R_1 \subseteq R$ be the set of rectangles with even length or width, and let $R_2 \subseteq R$ be the set of all rectangles with even area. Then $R_1 = R_2$.

Now Prove your conjecture!

7

HARVEY MUD COLLEGE

Learning Goal 3: Improve math communication skills

Table
discussion

Activity Part 1: What makes a good proof?

Read the four proofs of the rectangle theorem (on Canvas Module). **For each**, think about your reactions and give some feedback.

- + • What do you like about each proof?
- • What don't you like about each proof?
- ★ • Which is your favorite?

After reading these proofs:

- How would you revise **your** proof?
- What might you remove or incorporate?

Activity Part 2: What makes a good proof?

Read the four **proofs** of the generalized triangle inequality (on Canvas Module). For **each**, think about your reactions and discuss the following questions.

- How would you rank order the **proofs** from "best" to "worst"?
- What made the worst proof worst?
- What made the best proof best?

Hint: 2 proofs will lose points

• 2 proofs are correct, but one is the best.

HARVEY MUDD COLLEGE

Proof 1 : Incorrect induct. pf.
Not great formatting.

Proof 2 : Technically correct
Not pleasant to read.

Proof 3 : The best! *

Proof 4 : Formatted well!

But: Ind. argument not
correct!

Why write a proof?

The purpose of a **proof** is to illuminate a mathematical **truth**.

Some of the mathematical truths we take for granted today were not always accepted by the scientific community.

Examples include:

- Existence of irrational numbers *~300 BC*
- Existence of transcendental numbers *Not alg. Late 1800's!*

10

HARVEY MUDD COLLEGE

Why write a proof?

The purpose of a **proof** is to illuminate a mathematical **truth** (the *theorem, lemma, or corollary*). It's an explanation of why something is **true** that gives us additional insight or appreciation. A good **proof** achieves these goals in a way that is **clear, concise, and enjoyable to read**.

11

HARVEY MUDD COLLEGE

Before Next Class

Fill out the [pre-class survey](#) (link on [Module 1 on Canvas](#))
Read and/or watch video on induction ([Module 1 on Canvas](#))
Read and/or watch videos on countable and uncountable sets ([Module 2 on Canvas](#))

Upcoming Deadlines

Homework 1: Sunday, 1 February 2026, before 10pm

Office Hours & Grutoring

TBD